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Abstract
We prove that the integrable–nonintegrable discrete nonlinear Schrödinger
equation (AL-DNLS) introduced by Cai, Bishop and Gronbech-Jensen (Phys.
Rev. Lett. 72 591(1994)) is the discrete gauge equivalent to an integrable–
nonintegrable discrete Heisenberg model from the geometric point of view.
Then we study whether the transmission and bifurcation properties of
the AL-DNLS equation are preserved under the action of discrete gauge
transformations. Our results reveal that the transmission property of the
AL-DNLS equation is completely preserved and the bifurcation property
is conditionally preserved to those of the integrable–nonintegrable discrete
Heisenberg model.

PACS numbers: 02.40.Ky, 05.45.Mt, 07.55.Db

1. Introduction

The nonlinear Schrödinger equation (NLSE): iq̇ + q ′′ + κ|q|2q = 0 (with κ �= 0), where
we use dot for the time derivative and the prime for the space derivative, is a prototypical
integrable partial differential equation in mathematics which models a wide range of physical
phenomena, such as nonlinear optical pulse propagation, hydrodynamics, biophysics and so
on (see, for example, [1] for a list of the physical motivations of NLSE). Since most work
in nonlinear wave propagation involves at some extent a numerical study of the problem, the
issue of the discretization of the NLSE was addressed early in [2]. Among a large number of
possible discretizations of the NLSE, Ablowitz and Ladik noticed that there is one which is also
integrable [3]. It was shown that the integrable Ablowitz–Ladik (AL) equation has solutions
which are essential discretization of classic soliton solutions to the NLSE [3]. Another discrete
version of the NLSE was studied in [4–10] and references therein. The latter, usually referred
to as the discrete nonlinear Schrödinger equation (DNLS) or discrete self-trapping equation,
has quite a number of physical properties, but is in fact not integrable [4]. The motivations for
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studying the two discrete versions of the NLSE, i.e. the AL equation and the DNLS, are quite
different: the AL equation, on the one hand, has very nice interesting mathematical properties,
but not very clear physical significance; the introduction of the DNLS, on the other hand, is
primarily considered physically (see, for example, [6, 8]).

An equation is introduced by Cai, Bishop and Gronbech-Jensen [7] that interpolates
between the AL and the DNLS equation while containing these two equations as its limits. Its
fundamental merit is that it allows us to study the interplay of the integrable and nonintegrable
NLS-type terms in discrete lattice. Some detailed studies of the stationary version of the DNLS
equation are displayed in [7–9]. On the other hand, the geometric exploitations of (discrete)
gauge equivalence between integrable equations [11–14] or nonintegrable equations [15] play
an important role in understanding the dynamics of those equations. Therefore, it is very
interesting and important to have such a geometric study for the integrable–nonintegrable AL-
DNLS equation, and, furthermore, to see whether quantum chaotic properties of the AL-DNLS
equation are delivered or preserved under the action of discrete gauge transformations.

The paper is organized as follows. In section 2, we introduce the geometric concepts of
discrete connection and associated discrete curvature. By using this geometric terminology, we
prove that the AL-DNLS equation is discrete gauge equivalent to an integrable–nonintegrable
discrete Heisenberg model. In section 3, we study whether the transmission and bifurcation
properties of the AL-DNLS equation, which reflect quantum chaotic dynamics of the AL-
DNLS equation, are delivered to the integrable–nonintegrable discrete Heisenberg equation
under action of discrete gauge transformations and in section 4 we give conclusion and remarks.
We set an appendix at the end of the paper to give detailed proofs of some identities which are
important but not proved explicitly in the context of the paper.

2. Gauge equivalent structure of the AL-DNLS

The equation introduced by Cai, Bishop and Gronbech-Jensen [7] is as follows:

iq̇n + (qn+1 + qn−1 − 2qn) + µ|qn|2(qn+1 + qn−1) − γ |qn|2qn = 0, (1)

where qn is a complex amplitude, µ and γ are real constants called AL-nonlinearity and DNLS-
nonlinearity strength, respectively. This equation interpolates two well-studied discretizations
of the nonlinear Schrödinger equation, namely the AL and DNLS equations obtained by setting
γ = 0 (with µ �= 0) and µ = 0 (with γ �= 0), respectively.

For the AL equation, we may normalize it by a scaling into the following form according
to µ > 0 (focusing) and µ < 0 (de-focusing), respectively:

iq̇n + (qn+1 + qn−1 − 2qn) ± |qn|2(qn+1 + qn−1) = 0. (2)

Lax pairs of equations (2) are ([13])

φn+1 = Lnφn, φ̇n = Mnφn (3)

in which

Ln =
(

z q̄nz
−1

∓qnz z−1

)

Mn = i

(
1 − z2 + z − z−1 ∓ q̄nqn−1 −q̄n + q̄n−1z

−2

∓qn ± qn−1z
2 −1 + z−2 + z − z−1 ± qnq̄n−1

) (4)

where z is a spectral parameter and the overbar denotes complex conjugate. For the above
Lax pairs (3), as usual (see, for example, [3, 13]), its continuous limit reads

φ′ = Lφ, φ̇ = Mφ (5)
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with

L = λσ3 + U, M = −i2λ2σ3 − 2iλU + i(U 2 + U ′)σ3,

where σ3 = (
1 0
0 −1

)
and U = (

0 q̄

∓q 0

)
. It is a direct verification that the integrability condition

of (5) yields just the NLSE: iq̇ + q ′′ ± 2|q|2q = 0.
It is proved in [12] (resp. [13]) that, as integrable discrete equations, the AL equation (2)

of focusing (resp. de-focusing) type is gauge equivalent to the discrete Heisenberg spin model
of SU(2) type (resp. SU(1, 1) type):

Ṡn = i
[Sn+1, Sn]

1 + Sn+1 · Sn

− i
[Sn, Sn−1]

1 + Sn · Sn−1
, Sn =

(
s1
n s2

n − is3
n

s2
n + is3

n −s1
n

)
(6)

where Sn = (
s1
n, s

2
n, s

3
n

) ∈ S2 ↪→ R3, i.e., |Sn|2 = (
s1
n

)2
+
(
s2
n

)2
+
(
s3
n

)2 = 1 and Sn+1 · Sn is
the inner product of the two vectors in R3 (resp.

Ṡn = − [Sn+1, Sn]

1 − Sn+1 · Sn

+
[Sn, Sn−1]

1 − Sn · Sn−1
, Sn =

(
s1
n i

(−s2
n + s3

n

)
i
(
s2
n + s3

n

) −s1
n

)
(7)

where Sn = (s1
n, s

2
n, s

3
n

) ∈ H2 ↪→ R2+1, i.e., |Sn|2 = (s1
n

)2
+
(
s2
n

)2 − (s3
n

)2 = −1 with s3
n > 0,

and Sn+1 ·Sn in this case denotes the pseudo inner product of the three-dimensional Minkowski
space R2+1 with metric signature (+, +,−)). The corresponding Lax pairs of equations (6)
and (7) and some of their consequences are also presented in [12–14].

The geometric concept of gauge equivalence between integrable equations has been
generalized to nonintegrable case in [15], where the gauge equivalent structure of (1+1)-
dimensional anisotropic Landau–Lifshitz equation, regarded as an equation with prescribed
non-zero SU(2)-curvature representation, is displayed. Following the idea in [15], we
need to express equation (1) geometrically as a discrete equation with ‘prescribed curvature
representation’. So we must introduce some basic geometric concepts in the discrete case.
Suppose that {Ln} and {Mn} are g-valued sequences depending on a time variable t and
possibly a parameter z, where g is the Lie algebra of a given Lie group G. We define a discrete
connection {An} by

An = (Ln,Mn), (8)

and its corresponding discrete curvature
{
FA

n

}
by

FA
n = L̇n − Mn+1Ln + LnMn. (9)

Now, for the AL equation (2), because of Lax pairs (3), its discrete connection {An} is thus given
by (8) with {Ln} and {Mn} appeared in (4). Then, the integrability of the AL equation (2) is
just equivalent to the vanishing of the discrete curvature of its connection. Therefore, one may
also regard the AL equation (2) as an equation with zero (discrete) curvature representation.

When {Gn} is a G-valued sequence depending only on the time variable t, we take the
following discrete gauge transformation for a given discrete connection {An}:

An = (Ln,Mn) → Ãn = (L̃n, M̃n), (10)

to get a new {Ãn}, where L̃n = G−1
n+1LnGn and M̃n = G−1

n MnGn − G−1
n Ġn. It is very

important to find the relationship between the two discrete curvatures FA
n and F Ã

n under the
action of the discrete gauge transformation (10).

Lemma 1. Under the action of the discrete gauge transformation (10), we have ∀ n

F Ã
n = G−1

n+1F
A
n Gn. (11)
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Proof. In fact, by the definition, we see

F Ã
n = ˙̃Ln − M̃n+1L̃n + L̃nM̃n

= −G−1
n+1Ġn+1G

−1
n+1LnGn + G−1

n+1L̇nGn + G−1
n+1LnĠn

− (G−1
n+1Mn+1Gn+1 − G−1

n+1Ġn+1
)
G−1

n+1LnGn + G−1
n+1LnGn

(
G−1

n MnGn − G−1
n Ġn

)
= G−1

n+1(L̇n − Mn+1Ln + LnMn)Gn = G−1
n+1F

A
n Gn. (12)

This completes the proof of the lemma. �

Now we can express the AL-DNLS equation (1) as a discrete equation with prescribed
discrete curvature. For equation (1), let

Ln =
(

z q̄nz
−1

−qnz z−1

)
,

Mn = i

(
1 − z2 + z − z−1 − q̄nqn−1 + αn βn − q̄n + q̄n−1z

−2

γn − qn + qn−1z
2 −1 + z−2 + z − z−1 + qnq̄n−1 + σn

) (13)

where z is a free parameter, αn, βn, γn and σn are independent of z with γn = β̄n, σn = −ᾱn

and they consist of a matrix

Qn =
(

αn βn

γn σn

)
which satisfies the following successive relation:

−Qn+1

(
1 q̄n

−qn 1

)
+

(
1 q̄n

−qn 1

)
Qn

=
(

0 (µ − 1)|qn|2(q̄n+1 + q̄n−1) − γ |qn|2q̄n

(µ − 1)|qn|2(qn+1 + qn−1) − γ |qn|2qn 0

)
.

(14)

A discrete connection {An} associated with the AL-DNLS equation (1) is now defined by

An = (Ln(t, z),Mn(t, z)), (15)

where Ln(t, z) = Ln and Mn(t, z) = Mn are given by (13). It is a direct computation by using
formula (9) that the discrete curvature

{
FA

n

}
of the connection (15) is

FA
n = L̇n − Mn+1Ln + LnMn =

(
a11 a12

a21 a22

)
, (16)

where

a11 = iz(−αn+1 + qnβn+1 + αn) + iz−1q̄nγn

a12 = izβn + z−1[ ˙̄qn + i(−q̄nαn+1 − βn+1 + q̄n+1 − 2q̄n + q̄n−1 + |qn|2(q̄n+1 + q̄n−1) + q̄nσn)]

a21 = z[−q̇n + i(−γn+1 + qnσn+1 + qn+1 − 2qn + qn−1 + |qn|2(qn+1 + qn−1) − qnαn)] + iz−1γn

a22 = −izqnβn + iz−1(−γn+1q̄n − σn+1 + σn).

Let

Kn = i(z − z−1)

(−q̄nγn βn

−γn −qnβn

)
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be a prescribed discrete curvature. Then, it is a straightforward verification, by using (14), that
the AL-DNLS equation (1) is exactly equivalent to holding the following prescribed discrete
curvature representation:

FA
n = Kn. (17)

When γ = 0 and µ = 1 (i.e. the AL equation (2)), (14) can be solved explicitly by
αn = βn = γn = σn = 0 and consequently Kn ≡ 0. It reduces to zero curvature representation,
as mentioned above.

From now on, we restrict ourselves to equation (1) with µ > 0. The discussion of the case
µ � 0 is similar. In this case, by a scaling we may normalize equation (1) into the following
form:

iq̇n + (qn+1 + qn−1 − 2qn) + |qn|2(qn+1 + qn−1) − γ̂ |qn|2qn = 0, (18)

where γ̂ = γ /µ. We will denote γ̂ by γ in the following. Assume {qn} is a solution to
equation (18), from its prescribed discrete curvature representation (17) (with µ = 1) we see
that the discrete connection {An = (Ln(t, z),Mn(t, z))} defined by (15) with µ = 1 has zero
discrete curvature at z = 1. This is equivalent to that the following system

Gn+1 = Ln(t, 1)Gn, Ġn = Mn(t, 1)Gn, ∀ n (19)

is solvable. Let {Gn} be a fundamental solution to (19) which is of the form
(
gn pn

p̄n −ḡn

)
and we

thus use it to make the following discrete gauge transformation:

An = (Ln,Mn) → Ãn = (L̃n, M̃n) := (G−1
n+1LnGn,G

−1
n MnGn − G−1

n Ġn

)
. (20)

Now we deduce explicit expressions for the two components L̃n, M̃n of the discrete
connection {Ãn} in (20) and calculate the discrete curvature

{
F Ã

n

}
. First,

L̃n = G−1
n+1LnGn = G−1

n+1

(
z q̄nz

−1

−qnz z−1

)
Gn

= G−1
n+1

[
z + z−1

2

(
1 q̄n

−qn 1

)
+

z − z−1

2

(
1 q̄n

−qn 1

)
σ3

]
Gn

= z + z−1

2
I +

z − z−1

2
G−1

n σ3Gn

:= z + z−1

2
I +

z − z−1

2
Sn (21)

where I denotes the 2 × 2 unit matrix and

Sn = G−1
n σ3Gn. (22)

Next,

M̃n = G−1
n MnGn − G−1

n Ġn = G−1
n [Mn(t, z) − Mn(t, 1)] Gn

= iG−1
n

(
1 − z2 + z − z−1 (z−2 − 1)q̄n−1

(z2 − 1)qn−1 −1 + z−2 + z − z−1

)
Gn

= i(z − z−1)I + i

(
z2 + z−2

2
− 1

)
G−1

n

( −1 q̄n−1

qn−1 1

)
Gn

+ i
z2 − z−2

2
G−1

n

( −1 −q̄n−1

qn−1 −1

)
Gn

= i(z − z−1)I + i

(
1 − z2 + z−2

2

)
Sn + Sn−1

1 + 1
2 tr(SnSn−1)

− i
z2 − z−2

2

I + Sn−1Sn

1 + 1
2 tr(SnSn−1)

. (23)
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Here, we have used the identities

1 +
1

2
tr(Sn+1Sn) = 2

1 + |qn|2 , (24)

G−1
n

(
1 q̄n−1

−qn−1 1

)
Gn = G−1

n−1Gn = I + Sn−1Sn

1 + 1
2 tr(Sn−1Sn)

(25)

and

G−1
n

(
1 −q̄n−1

−qn−1 −1

)
Gn = Sn + Sn−1

1 + 1
2 tr(SnSn−1)

(26)

which are deduced from (19) and (22) (see the appendix in the end of the paper for the detailed
proofs of them). Finally, we come to compute the discrete curvature

{
F Ã

n

}
. On the one hand,

from the definition we have

F Ã
n = ˙̃Ln − M̃n+1L̃n + L̃nM̃n

= z − z−1

2
Ṡn − i

(
1 − z2 + z−2

2

)
z + z−1

2

Sn+1 + Sn

1 + 1
2 tr(Sn+1Sn)

+ i
z2 − z−2

2

z + z−1

2

I + SnSn+1

1 + 1
2 tr(Sn+1Sn)

− i

(
1 − z2 + z−2

2

)
z − z−1

2

(Sn+1 + Sn)Sn

1 + 1
2 tr(Sn+1Sn)

+ i
z2 − z−2

2

z − z−1

2

(I + SnSn+1)Sn

1 + 1
2 tr(Sn+1Sn)

+ i

(
1 − z2 + z−2

2

)
z + z−1

2

Sn + Sn−1

1 + 1
2 tr(SnSn−1)

− i
z2 − z−2

2

z + z−1

2

I + Sn−1Sn

1 + 1
2 tr(SnSn−1)

+ i

(
1 − z2 + z−2

2

)
z − z−1

2

Sn(Sn + Sn−1)

1 + 1
2 tr(SnSn−1)

− i
z2 − z−2

2

z − z−1

2

Sn(I + Sn−1Sn)

1 + 1
2 tr(SnSn−1)

= z − z−1

2

(
Ṡn − i[Sn+1, Sn]

1 + 1
2 tr(Sn+1Sn)

+
i[Sn, Sn−1]

1 + 1
2 tr(SnSn−1)

)
, (27)

where the proof of the last step of equation (27) is given in the appendix at the end of the
paper. On the other hand, by lemma 1, we see that this discrete curvature

{
F Ã

n

}
should also be

F Ã
n = G−1

n+1F
A
n Gn = G−1

n+1KnGn = i(z − z−1)G−1
n+1

(−q̄nγn βn

−γn −qnβn

)
Gn

= i(z − z−1)G−1
n

(
0 βn

−γn 0

)
Gn = i

z − z−1

2
G−1

n (σ3Qn − Qnσ3)Gn

= i
z − z−1

2

(
G−1

n σ3GnG
−1
n QnGn − G−1

n QnGnG
−1
n σ3Gn

)
= i

z − z−1

2

[
Sn,G

−1
n QnGn

]
. (28)

We come to express the right-hand side of (28) in terms of {Sn}. From (14) with µ = 1, we
see

−G−1
n+1Qn+1Gn+1 + G−1

n QnGn = G−1
n+1

(
0 −γ |qn|2q̄n

−γ |qn|2qn 0

)
Gn
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= −γG−1
n

|qn|2
1 + |qn|2

(
1 −q̄n

qn 1

)(
0 q̄n

qn 0

)
Gn

= −γ
|qn|2

1 + |qn|2
[

− |qn|2G−1
n

(
1 0
0 −1

)
Gn + G−1

n

(
0 q̄n

qn 0

)
Gn

]

= −γ
|qn|2

1 + |qn|2
[

− |qn|2Sn + G−1
n

(
1 q̄n

qn −1

)
Gn − Sn

]

= γ
1 − 1

2 tr(Sn+1Sn)

1 + 1
2 tr(Sn+1Sn)

Sn − γ

2

1 − 1
2 tr(Sn+1Sn)

1 + 1
2 tr(Sn+1Sn)

(Sn+1 + Sn)

= γ

(
1

1 + 1
2 tr(Sn+1Sn)

− 1

2

)
(Sn − Sn+1). (29)

Here in the last third equality we have used (22) and in the last second equality we have used
the identities

1 − 1

2
tr(Sn+1Sn) = 2|qn|2/(1 + |qn|2), 1 +

1

2
tr(Sn+1Sn) = 2

1 + |qn|2 (30)

and

G−1
n

(
1 q̄n

qn −1

)
Gn = Sn+1 + Sn

1 + 1
2 tr(Sn+1Sn)

. (31)

These identities are also proved explicitly in the appendix. From (29), we obtain

G−1
n QnGn − G−1

n−1Qn−1Gn−1 = γ

(
1

1 + 1
2 tr(SnSn−1)

− 1

2

)
(Sn − Sn−1). (32)

From now on, we fix Q0 = 0 in solving the successive equation (14) with µ = 1. Thus, the
right-hand side of (28) is i z−z−1

2 [Sn, Pn] with Pn being given by

Pn =


∑n−1

k=1

(
− γ

1+ 1
2 tr(Sk+1Sk)

+ γ

1+ 1
2 tr(SkSk−1)

)
Sk +

(
γ

1+ 1
2 tr(S1S0)

− γ

2

)
S0, n > 0,

0, n = 0,∑n+1
k=−1

(
− γ

1+ 1
2 tr(SkSk−1)

+ γ

1+ 1
2 tr(Sk+1Sk)

)
Sk +

(
γ

1+ 1
2 tr(S0S−1)

− γ

2

)
S0, n < 0.

(33)

Equating (27) and (28) (since lemma 1), we see that {Sn} satisfies the following integrable–
nonintegrable discrete Heisenberg model:

dSn

dt
= i[Sn+1, Sn]

1 + 1
2 tr(Sn+1Sn)

− i[Sn, Sn−1]

1 + 1
2 tr(SnSn−1)

+ i[Sn, Pn]. (34)

Remark 1. We would like to point out that, from equation (19), the gauge function Gn is in

general of the form
(
gn pn

p̄n −ḡn

)
. Thus, the matrix Sn given by G−1

n σ3Gn is of the form
(

s1
n s2

n−is3
n

s2
n+is3

n −s1
n

)
for some s1

n, s
2
n, s

3
n with Sn = (

s1
n, s

2
n, s

3
n

) ∈ S2 ↪→ R3 (since S2
n = G−1

n σ3GnG
−1
n σ3Gn = I ).

Furthermore, equation (34) is equivalent to

dSn

dt
= −2

Sn × Sn+1

1 + (Sn · Sn+1)
− 2

Sn × Sn−1

1 + (Sn · Sn−1)
+ 2Sn × Pn, (35)

in which Pn is given by (33) only with matrices Sk being replaced by vectors Sk and 1
2 tr(Sn+1Sn)

being replaced by Sn · Sn+1.
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It is obvious that (34) is an equation with prescribed discrete curvature representation:

F Ã
n = K̃n, (36)

where {Ãn = (L̃n, M̃n)} with L̃n being given by (21) and M̃n by (23), and K̃n = i z−z−1

2 [Sn, Pn].
In fact, since we have fixed Q0 = 0, obviously G−1

0 Q0G0 = 0. For n > 0, replacing the
subscript n with k in (32) and summing equation (32) with respect to k from 1 to n, we obtain
G−1

n QnGn = Pn. Similarly, we also obtain G−1
n QnGn = Pn in the case of n < 0. This

establishes (36) by applying (28).
To sum up, we have

Theorem 1. The AL-DNLS equation (18) is discrete gauge equivalent to the integrable–
nonintegrable discrete Heisenberg model (34) by the gauge matric sequence {Gn} satisfying
(19). Especially, when γ = 0, the result is reduced to the known fact that the AL equation of
focusing type is gauge equivalent to the DHM.

3. Applications

It is well known that, in integrable case, N-soliton solutions to the AL equation (2) of
focusing (resp. de-focusing) type correspond to N-soliton solutions to the integrable discrete
Heisenberg spin model (6) (resp. (7)) under the action of discrete gauge transformations
[11–13, 16]. Furthermore, it is also proved that these discrete gauge equivalences also fulfil
the corresponding principle in quantum theory [13]. This shows that solitonic properties
are preserved under the action of discrete gauge transformations. As we have established
the discrete gauge equivalence between the AL-DNLS equation (18) and the integrable–
nonintegrable discrete Heisenberg model (34), it is very interesting and important to see
whether chaotic dynamical properties of the AL-DNLS equation (18) are transformed to
those of the integrable–nonintegrable discrete Heisenberg model (34) by discrete gauge
transformations or not. We only check this here for the transmission and bifurcation-creating
properties of the AL-DNLS equation (18). One knows that these properties are related to the
discrete KAM theory and quantum chaotic properties of the AL-DNLS equation (18) (see, for
example, [8, 6]). Since we do not deal with the integrable case (i.e. γ = 0) in this section, for
the sake of simplicity, (34) is called the nonintegrable discrete Heisenberg model and denoted
by the N-DHM from now on.

Before doing this, let us give a general description of constructing solutions to the N-DHM
(34) from those to the AL-DNLS equation (18). For a solution {qn} to equation (18), as we
have chosen Q0 = 0 in getting (34), let G0 be a fundamental solution to

dG0

dt
= M0(t, 1)G0 = i

( −q̄0q−1 −q̄0 + q̄−1

−q0 + q−1 q0q̄−1

)
G0. (37)

Using (14) with µ = 1, it is a direct verification that, by successive iteration,

Gn =
{

Ln−1(t, 1)Gn−1, n > 0

Ln+1(t, 1))−1Gn+1, n < 0
=
{

Ln−1(t, 1) · · · L0(t, 1)G0, n > 0

(Ln+1(t, 1) · · · L0(t, 1))−1G0, n < 0

=



(
An Bn

−B̄n Ān

)
G0, n > 0

(
An Bn

−B̄n Ān

)−1

G0, n < 0

(38)
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solves equation (19), where for n > 0

A±n = 1 +
n−1∑
k=1

(−1)k
∑

0�j1<···<j2k�n−1

q̄±j2k
q±j2k−1 · · · q̄±j2q±j1 , (39)

B±n =
n−1∑
k=1

(−1)k+1
∑

0�j1<···<j2k−1�n−1

q̄±j2k−1q±j2k−2 · · · q̄±j1 . (40)

Therefore,

Sn = G−1
n σ3Gn =



1

|An|2 + |Bn|2 G−1
0

(
|An|2 − |Bn|2 2ĀnBn

2AnB̄n |Bn|2 − |An|2
)

G0, n > 0

G−1
0 σ3G0, n = 0

1

|An|2 + |Bn|2 G−1
0

(
|An|2 − |Bn|2 −2AnBn

−2ĀnB̄n |Bn|2 − |An|2
)

G0, n < 0

(41)

is a solution to the N-DHM (34) which corresponds to {qn} under the discrete gauge
transformation.

3.1. Transmission properties

In this subsection, we study as a physical application whether the wave transmission properties
of the nonlinear lattice chain of AL-DNLS equation are preserved under the action of discrete
gauge transformations to that of the N-DHM (34). In order to do this, we need to clear what
is the meaning of the transmission properties of a nonlinear matrix chain embedded in the
nonlinear N-DHM (34) and so do some preliminaries first.

By setting qn(t) = ϕn exp[i(E − 2)t], where ϕn is a complex amplitude which is
independent of the time variable t and E is a real parameter, we get the following recurrence
equation originated from the stationary discrete nonlinear Schrödinger equation of the AL-
DNLS equation (18):

Eϕn − (1 + |ϕn|2)(ϕn+1 + ϕn−1) + γ |ϕn|2ϕn = 0,

which can be rewritten as

ϕn+1 + ϕn−1 = E + γ |ϕn|2
1 + |ϕn|2 ϕn. (42)

It is obvious that (42) reduces to a degenerate linear map if γ = E. Although one may
choose E to be E = γ , we are interested in the nondegenerate case E �= γ in the following.
Equation (42) gives a recurrence relation ϕn+1 = ϕn+1(ϕn, ϕn−1) acting as a four-dimensional
mapping C2 → C2. However, this equation can be reduced to a two-dimensional mapping on
the plane R2 → R2. Following Wan and Soukoulis [9], we use polar coordinates for ϕn, that
is ϕn = rn exp(iθn), and rewrite equation (42) equivalently as

rn+1 cos(�θn+1) + rn−1 cos(�θn) = E + γ r2
n

1 + r2
n

rn, (43)

rn+1 sin(�θn+1) − rn−1 sin(�θn) = 0, (44)

where �θn = θn − θn−1. Equation (44) is equivalent to conservation of the probability current

J = rnrn−1 sin(�θn). (45)
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We further introduce real-valued variables defined by
xn := ϕ̄nϕn−1 + ϕnϕ̄n−1 = 2rnrn−1 cos(�θn),

yn := i[ϕ̄nϕn−1 − ϕnϕ̄n−1] = 2J,

zn := |ϕn|2 − |ϕn−1|2 = r2
n − r2

n−1.

(46)

Then, the system of equations (43), (44) can be rewritten as a two-dimensional real map Mγ,E

as follows:

Mγ,E :


xn+1 = E + 1

2γ (wn + zn)

1 + 1
2 (wn + zn)

(wn + zn) − xn

zn+1 = 1

2

x2
n+1 − x2

n

wn + zn

− zn,

(47)

where wn = √x2
n + z2

n + 4J 2.
Let us review the transmission properties of the AL-DNLS lattice chain (see, for example,

[6, 8] for details). We consider a piece of nonlinear medium material 0 � x � N of length N
in a stationary regime. An incident plane waves R0 eikx on the left (x � 0) induces a reflected
plane wave R e−ikx on the left and a transmitted plane wave T eikx on the right (x � N). The
transmission problem associated with (42) reads

ϕn =
{

R0 eikn + R e−ikn, −1 � n � N

T eikn, n � N.
(48)

We denote by R0, R the amplitudes of the incoming and reflected waves and by T the
transmitted amplitude at the right end of the nonlinear chain. |R0|2 and |T |2 are called
the incoming wave intensity and the transmitted intensity, respectively. R and T depend on
the wave number k and on N. The medium is nonlinear, thus the transmission coefficient as
a function of the incoming intensity |R0|2 is not a constant. Then, for a given value of the
incoming intensity, there may be several value of |R|2 and |T |2, this is called bistability [6].
However, for a given k, we can solve (42) step by step from n = N to n = 0 for an output
T eikn and then find R0 and R. Thus, the pair (k, |T |) initializes the incoming amplitude R0

completely (see, for example, [8]). In fact, we have (ϕN+1, ϕN) = (T e[ik(N+1)], T e[ikN]). From
the pair (ϕN+1, ϕN) we get (rN+1, rN) and (θN+1, θN) as well as xN+1 = 2|T | cos k, zN+1 = 0.
Using equations (43) and (44) and iterating from n = N to 0 successively determines the
amplitudes (rN−1, . . . , r0) and phases (θN−1, . . . , θ0). Thus, we eventually obtain the value of
ϕ0 and hence R0 and R on the left end of the nonlinear chain.

If the resulting incoming wave intensity |R0|2 is of the same order of the transmitted
intensity |T |2, independent of N, we say that the nonlinear chain with wave number k and
outgoing intensity |T |2 is to be transmitting. If R0 appears to be a rapidly increasing function
of N, we say that this nonlinear chain is to be non-transmitting. Figures 1–3 display the
transmission behaviours in the (k, T ) parameter plane, representing region of transmitting
(white) and non-transmitting (hatched) behaviours. The transmission behaviour of the general
AL-DNLS (1) has been displayed in [6, 8], here we only present the case with µ = 1 and
γ = 4 in figure 1, and figures 2 and 3 are enlargements of figure 1 in the local area of
0 � k � 0.6, 0.4 � T � 2 and 1.6 � k � 1.8, 0 � T � 0.3, respectively. In figure 1, the
white regions correspond to values of (k, T ) for which the nonlinear chain is to be transmitting.
In such a situation, the intensity R0 remains of the same order as T when N increases. On the
other hand, in the hatched regions, the amplitude R0, as a function of N, is rapidly increasing
and thus the nonlinear chain falls in a chaotic region, as also pointed out in [6] in the case of
DNLS equation. For wave numbers k ∈ [0, π

2

]
, the regions of bounded (i.e., transmitting) and
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Figure 1. Wave transmission properties in the (k, T ) plane. Hatched regions correspond the non-
transmitting regime whereas the white regions show transmission. The chain length is N = 500
in the case of µ = 1 and γ = 4.

Figure 2. The enlargement of figure 1 in the area 0 � k � 0.6, 0.4 � T � 2.

unbounded (i.e., non-transmitting) solutions are separated by a sharp smooth curve as shown
in figure 1. Interesting feature appears in figure 3, which shows that the transmitting regions
consist a sequence of fractal crescent shapes in the area of 1.6 � k � 1.8, 0 � T � 0.3.

The transmission problem associated with the nonintegrable discrete Heisenberg model
(34) is now proposed as follows. There is a finite nonlinear matrix wave chain

{
Sn =

G−1
n σ3Gn

}
(1 � n � N) embedded in a nonlinear chain of the N-DHM (34) from the left

towards the right, where they are scattered into reflected and transmitted parts, which look like

Gn =
(

1 q̄n−1

−qn−1 1

)
· · ·
(

1 q̄0

−q0 1

)
G0, n � 1, (49)

with G0 satisfying (37) and qn being given by

qn =
{

ei(E−2)t (R0 e−ikn + R eikn), −1 � n � N

ei(E−2)tT e−ikn, n � N.
(50)
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Figure 3. The enlargement of figure 1 in the area 1.6 � k � 1.8, 0 � T � 0.3. The white layer
regions of crescent shape indicate the fractal phenomenon in this area.

Similarly, R0, R present the amplitudes of the incoming and reflected waves and T the
transmitted amplitude at the right end of the nonlinear chain under consideration. |R0|2
and |T |2 are also called the incoming wave intensity and the transmitted intensity of the
nonlinear matrix chain, respectively.

In order to display the transmission behaviour of the nonlinear matrix chain
{
Sn =

G−1
n σ3Gn

}
with Gn given by (49), we must first show that the pair (k, T ) initializes the

incoming amplitude R0 completely. This is done by the following lemma.

Lemma 2. Assume that the matrix nonlinear chain
{
Sn = G−1

n σ3Gn

}
with Gn given by (49)

satisfies the N-DHM (34) for n � 1. Then, the plane waves {qn} given by (50) for n � −1
satisfies the AL-DNLS equation (18) up to a factor of the form e2iα0 , where α0 is a real number.

Proof. For the matrix sequence {Sn} given in the lemma, we shall find a sequence {G̃n} such
that σ3 = G̃nSnG̃

−1
n and

G̃n+1 =
(

1 ¯̃qn

−q̃n 1

)
G̃n (51)

for some complex q̃n. In fact, the general solution to σ3 = G̃nSnG̃
−1
n is (see, for example,

[16])

G̃n = diag(Fn, F̄n)Gn, (52)

where Fn is a complex number. Because of the requirement of (51), we see that Fn+1 =
Fn = · · · = F0 by substituting (52) into (51) and hence q̃n = Fn+1qnF̄

−1
n = ei2α0qn for some

real α0 (when we write F0 = r eiα0 for some r > 0 and α0). Put

LG
n = G̃n+1L̃n(z)G̃

−1
n =

(
z ¯̃qnz

−1

−q̃nz z−1

)
,

MG
n = ˙̃GnG̃

−1
n + G̃nM̃n(z)G̃

−1
n = ˙̃GnG̃

−1
n + i

(
1 − z2 + z − z−1 ¯̃qn−1(z

−2 − 1)

q̃n−1(z
2 − 1) −1 + z−2 + z − z−1

)
,
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where L̃n and M̃n are given by (21) and (23), respectively, where {Sn} are given as above.
Since {Sn} satisfies the N-DHM (34) or, equivalently, L̃n and M̃n satisfy the prescribed discrete
curvature condition (36), by lemma 1 we have

L̇G
n + LG

n MG
n − MG

n+1L
G
n = G̃n+1K̃nG̃

−1
n , (53)

where K̃n = i z−z−1

2 [Sn, Pn] with Pn given by (33). It is a direct computation that

lhs of (53) =
(

1 ¯̃qn

−q̃n 1

)[(
z 0
0 z−1

)
˙̃GnG̃

−1
n − ˙̃GnG̃

−1
n

(
z 0
0 z−1

)]

+ i(z − z−1)

(
¯̃qnq̃n−1 − |qn|2 ¯̃qn − ¯̃qn−1

−q̃n + q̃n−1 q̃n
¯̃qn−1 − |̃qn|2

)

rhs of (53) = i(z − z−1)

(− ¯̃qnγn βn

−γn −q̃nβn

)
,

where βn and γn are off-diagonal entries of the matrix Qn satisfying (14) (in which {qn} is
just replaced by {̃qn}) with µ = 1. Thus, by substituting the above expressions into (53), the
equation of the off-diagonal part of (53) leads to

off-diagonal of ˙̃GnG̃
−1
n = i

( ∗ − ¯̃qn + ¯̃qn−1 + βn

−q̃n + q̃n−1 + γn ∗
)

, (54)

where ∗ are some expressions which cannot be carried out at this moment. On the other hand,
at the same time we also have

lhs of (53) =
(

0 ˙̃̄qnz
−1

− ˙̃qnz 0

)
+

(
z ¯̃qnz

−1

−q̃nz z−1

)
˙̃GnG̃

−1
n − ˙̃Gn+1G̃

−1
n+1

(
z ¯̃qnz

−1

−q̃nz z−1

)

+ i(z − z−1)

(
¯̃qnq̃n−1 − |̃qn|2 ¯̃qn − ¯̃qn−1

−q̃n + q̃n−1 q̃n
¯̃qn−1 − |̃qn|2

)
.

The equation of the diagonal part of (53) in this time implies

diagonal of ˙̃GnG̃
−1
n = i

(− ¯̃qnq̃n−1 + αn ∗
∗ q̃n

¯̃qn−1 + σn

)
+ iτ(t)σ3, (55)

for some real-valued function τ(t) depends only on t. Combining (54) with (55) we finally
obtain

˙̃GnG̃
−1
n = i

( − ¯̃qnq̃n−1 + αn − ¯̃qn + ¯̃qn−1 + βn

−q̃n + q̃n−1 + γn q̃n
¯̃qn−1 + σn

)
+ iτ(t)σ3. (56)

Note that the above restriction on G̃n allows an arbitrariness in G̃n of the form G̃n → eiκ(t)σ3G̃n

for a real-valued function κ(t). If we require κ(t) to fulfil κ̇(t) = −τ(t), then G̃n can be
modified so that for the new G̃n the second term on the right-hand side of (56) is zero. This
indicates that LG

n (z) and MG
n (z) are exactly the two components of the discrete connection

of the AL-DNLS equation (18) and hence q̂n = e2i(α0+k(t))qn satisfies the AL-DNLS equation
(18). However, by substituting q̂n = e2i(α0+k(t))qn into (18), we see κ̇(t) = 0 (since qn is
nontrivial), i.e., κ(t) = real const. This proves lemma 2. �

We remark that lemma 2 actually shows that the inverse of theorem 1 is still true. Lemma 2
tells us that q̂n = e2iαqn satisfies the AL-DNLS equation (18) for some real number α and so
does qn. This implies that

ϕn =
{

(R0 eikn + R e−ikn), −1 � n � N

T eikn, n � N
(57)
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solves equation (42). From the known transmission properties of equation (42) indicated above,
we see that the pair (k, T ) of the momentum and transmitted amplitude of the nonlinear matrix
chain

{
Sn = G−1

n σ3Gn

}
given by (49) initializes the incoming amplitude R0 completely too.

Based on this fact we shall say that the nonlinear matrix chain is said to be transmitting
if the incoming wave intensity |R0|2 is of the same order of the transmitted intensity |T |2,
otherwise it is said to be non-transmitting. Thus, the nonlinear matrix chain has the similar
transmission behaviours as those of the AL-DNLS equation. Figures 1–3 are completely
suitable in displaying the transmission behaviours of the finite nonlinear matrix chain of the
N-DHM (34) in the parameters (k, T ) plane with chain length N = 500 in the case of µ = 1
and γ = 4. This illustrates not only that the N-DHM (34) has transmission properties, but
also that the transmission properties are preserved and delivered under the action of discrete
gauge transformations.

Theorem 2. The wave transmission properties of the nonlinear lattice chain of the AL-DNLS
equation (18) are transformed to those of the nonlinear matrix chain of the N-DHM (34) by
discrete gauge transformations.

We would like to point out that theorem 2 reveals an interesting fact that some quantum
chaotic properties of different nonlinear discrete equations may relate and interact to each
other.

3.2. Period-doubling bifurcation sequence

In this subsection, we first briefly review constructions of period-1 and period-2 solutions
to (42) or equivalently the map (47), which indicates the bifurcation-creating property of the
AL-DNLS equation (18). Then, we display whether these period solutions are preserved under
the action of discrete gauge transformations.

We need to divide our discussion into two different situations. One is the case that the
probability current J �= 0. In this case, it is convenient to introduce the scaling transformation:
2Jxn → x̃n, 2Jzn → z̃n, 2Jwn → w̃n, Jγ → γ̃ and J → µ̃. Then, we obtain the scaled
map

Mµ̃,γ̃ ,E :


x̃n+1 = E + γ̃ (w̃n + z̃n)

1 + µ̃(w̃n + z̃n)
(w̃n + z̃n) − x̃n,

z̃n+1 = 1

2

x̃2
n+1 − x̃2

n

w̃n + z̃n

− z̃n,

(58)

with w̃n = √x̃2
n + z̃2

n + 1. As pointed out in [8], the period-1 orbit (solution) is determined by

x = 1

2

E + γ̃ w

1 + µ̃w
w, z = 0, (59)

where w =
√

x2 + 1. The first equation of (59) possesses one real root for γ̃ = 0, resulting
in a stable fixed point and has either no root or two real roots for γ̃ > 0. The two real roots
correspond to one hyperbolic and one elliptic fixed point, respectively. Only for E < 0,
as a map of the parameters µ̃, γ̃ , E, a period-doubling bifurcation is created for the map
Mµ̃,γ̃ ,E , where the stable fixed point is converted into an unstable hyperbolic point with
reflection accompanied by creation of two additional elliptic points. The period-2 bifurcation
for period-1 orbit sets in when |E|/γ̃ > 1 (E < 0) and the newborn period-2 orbits (solutions)
are

x = ±
[(

E

γ̃

)2

− 1

]1/2

, z = 0. (60)
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Note that the location of the period-2 orbits for the map Mµ̃,γ̃ ,E depends only on the (γ̃ , E).
We would like to point out that, at a sufficiently high |E| value, the period-2 orbit also loses
stability caused by a next period-doubling bifurcation, which in turn gives rise to the birth of
the corresponding period-4 orbit (see [8]).

Another case is J = 0. Similarly, for the two-dimensional real map (47) Mγ,E with
J = 0, the period-1 solution is the fixed point of the map (47) with J = 0, which is

x = x0 = 2
E − 2

2 − γ
> 0, z = 0 (61)

when the parameters γ and E satisfy E−2
2−γ

> 0 or

x = x0 = −2
E + 2

2 + γ
< 0, z = 0 (62)

when the parameters satisfy E+2
2+γ

> 0. The period-2 solution is

x = x0 = ±2

∣∣∣∣Eγ
∣∣∣∣ , z = 0 (63)

when the parameters γ and E satisfy Eγ < 0, which creates period-doubling bifurcation for
the map Mγ,E (47) with J = 0. Again the location of the period-2 orbits for the map Mγ,E

(47) with J = 0 also depends only on (γ, E).
For the above period-1, period-2 orbit solutions (61)–(63) of the map (47) with J = 0 and

period-1, period-2 orbit solutions (59), (60) of the map (58) with J �= 0, we come to transfer
them into solutions to the AL-DNLS equation (18) and to see if their gauge corresponding
solutions to the N-DHM (34) have the same period, respectively.

Note that there is no period-1 solution {Sn} to the N-DHM (34) which corresponds to
any nontrivial solution {qn} to the AL-DNLS equation (18) under the action of discrete gauge
transformations. In fact, if there is such a period-1 solution {Sn}, then the corresponding
gauge matrix function {Gn} should satisfy G−1

n+1σ3Gn+1 = G−1
n σ3Gn because of Sn+1 = Sn,

which implies Gn+1G
−1
n commutes with σ3. But we know from the first equation of (19) that

Gn+1G
−1
n = ( 1 q̄n

−qn 1

)
, which does not commute with σ3. This is a contradiction.

Now for the period-1 orbit solution (61), its yielding solution
{
qn(t) =

√
x0
2 ei[(E−2)t−θ0]

}
to the AL-DNLS equation (18) is period 1 too. As just indicated above, there is no period-1
solution {Sn} to the N-DHM (34), which corresponds this period-1 solution via a discrete
gauge transformation. Another period-1 orbit solution (62) yields actually a period-2 solution
to the AL-DNLS equation (18). This solution is explicitly written as

q0(t) =
√−x0

2
exp i[(E − 2)t − θ0],

q1(t) = −
√−x0

2
exp i[(E − 2)t − θ0],

qn+2(t) = qn(t) ∀ n,

(64)

with x0 = −2E+2
2+γ

< 0, where θ0 is the argument of ϕ0. Its gauge corresponding solution {Sn}
is thus given by formula (41). Because of qn + qn+1 = 0, one checks in this case (by using

formulae (39), (40) with n = 2) that Gn+2 = (1+ −x0
2 0

0 1+ −x0
2

)
Gn for all n. Therefore, the solution

{Sn} satisfies

Sn+2 = G−1
n+2σ3Gn+2 = G−1

n σ3Gn = Sn, ∀n. (65)
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This indicates that the solution {Sn} is still of period 2. The explicit expressions of the solution
{Sn} can be deduced as follows. Substituting q0 and q1 given by (64) into the ODE (37) (for
the purpose of simplicity, we take θ0 = 0), we solve it to get

G0 =
(cos F t + i−x0+E−2

2F
sin F t

)
e−i E−2

2 t −2i
√−x0

2
F

e−i E−2
2 t sin F t

−2i
√−x0

2
F

ei E−2
2 t sin F t

(
cos F t − i−x0+E−2

2F
sin F t

)
ei E−2

2 t

 ,

where F =
√(−x0+E−2

2

)2 − 2x0. Thus, the period-2 solution {Sn} is explicitly expressed (we
only need to give first two of it) as follows:

S0 = G−1
0 σ3G0

=

 cos2 F t +
[(−x0+E−2

2F

)2 − −2x0
F 2

]
sin2 F t −4i

(
cos F t − i

−x0+E−2
2
F

sin F t

) √−x0
2

F
sin F t

4i

(
cos F t + i

−x0+E−2
2
F

sin F t

) √−x0
2

F
sin F t −cos2 F t −

[(−x0+E−2
2F

)2 − −2x0
F 2

]
sin2 F t

,

S1 = G−1
0

1

1 + −x0
2

 1 + x0
2 2

√
−x0

2 e−i(E−2)t

2
√

−x0
2 ei(E−2)t −1 − x0

2

G0.

The period-doubling bifurcation solution (63) yields a period-4 solution to the AL-DNLS
equation (18), which is expressed explicitly as

q0(t) = q3(t) =
√

x0
2 exp i[(E − 2)t − θ0],

q1(t) = q2(t) =
√

x0
2 exp i[(E − 2)t − π − θ0],

qn+4(t) = qn(t), ∀n,

(66)

where x0 = 2
∣∣E

γ

∣∣. In this case, we see that the gauge corresponding solution {Sn} to
the N-DHM (34) satisfies Sn+4 = Sn (∀n). This is because of a direct calculation:

Gn+4 = (
(1+ x0

2 )2 0
0 1+(

x0
2 )2

)
Gn for all n. Thus, {Sn} is still of period 4. In other words, the

period-4 solution (66) of the AL-DNLS equation (18) is preserved under the action of the
discrete gauge transformation.

Finally, we check if the period-1, period-2 orbit solutions (59), (60) in the case of J �= 0
are preserved under the action of discrete gauge transformations. In the case of γ̃ � 0, let
x = x̃0 be a real root of the algebraic equation

x = E + γ̃
√

x2 + 1

2(1 + µ̃
√

x2 + 1)

√
x2 + 1.

Then,

qn(t) = ϕn exp[i(E − 2)t] = r exp i[(E − 2)t − nα0 − θ0] (67)

is its yielding solution to the AL-DNLS equation (18), where θ0 is the argument of ϕ0 (without
loss of generality, θ0 is chosen to be zero), r associated with J �= 0 satisfies the compatibility

condition x̃2
0

16J 2 + J 2 = r4 from the scaling transformation and (46), and α0 = arcsin J
r2 . This

solution is not period in general. But it may be a period-m solution for a positive integer m
if it happens α0 = 2π

m
. In this situation, we check that, for m = 3 or 4, gauge corresponding
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solution of (67) to (34) is not of the period m. It is also verified that, for the period-2 solution
(60) which yields the following period-4 solution

qn(t) = r exp i

[
(E − 2)t −

[
n + 1

2

]
π +

1 + (−1)n+1

2
α0

]
, ∀n (68)

to the AL-DNLS equation (18) (where r and α0 are the same ones appeared in (67)), the gauge
corresponding solution {Sn} to (34) is not of period 4.

Thus, roughly speaking, we have displayed the following interesting phenomenon. The
nontrivial period solutions (i.e., period � 2) with the probability current J = 0 to the
AL-DNLS equation (18) are transformed by discrete gauge transformation to solutions with
the same period to the nonintegrable discrete Heisenberg model (34). However, the period
solutions with the probability current J �= 0 to the AL-DNLS equation (18) are transformed
by discrete gauge transformation to solutions without the same period to the nonintegrable
discrete Heisenberg model (34). This illustrates that the bifurcation-creating properties of
the AL-DNLS equation (18) are conditionally preserved under the action of discrete gauge
transformations. We should point out that the bifurcation properties of the two gauged discrete
equations that are not exactly the same need not imply that the two dynamical systems are
different. Even in the continuum case, for example, in polar coordinates of the Heisenberg
model and the nonlinear Schrödinger equations they do not correspond to each other in all
their properties. In order to get an one-to-one correspondence, [17, 18] modify the polar
coordinates appropriately by introducing a linear time-dependent term. Therefore, it may be
possible that all the bifurcation properties of the recurrence equation of the stationary discrete
nonintegrable nonlinear Schrödinger equation are produced by another stationary discrete
nonintegrable Heisenberg model by suitable stationary modification.

4. Conclusion

In this paper, we presented a geometric investigation of the equation introduced by Cai, Bishop
and Gronbech-Jensen [7] that interpolates between integrable AL and nonintegrable DNLS
equation. By using the terminology of discrete connection and associated discrete curvature,
we show that the AL-DNLS equation (18) is discrete gauge equivalent to the integrable–
nonintegrable discrete Heisenberg model (34) (theorem 1) and vice versa (lemma 2). As
solitonic properties of the integrable AL equation are preserved to those of the integrable
discrete Heisenberg spin model under the action of discrete gauge transformations, it is
interesting and important to see whether chaotic properties of the AL-DNLS equation are
preserved under the action of discrete gauge transformations.

The transmission property of the AL-DNLS equation is one of important features
describing its chaotic dynamics. This property is proved to be preserved and delivered to
that of the nonintegrable discrete Heisenberg model (34) under the action of discrete gauge
transformations. It indicates that the AL-DNLS equation (18) and the nonintegrable discrete
Heisenberg model (34) share completely the same transmitting behaviours (see figures 1–3).
The bifurcation-creating property, another important dynamical feature, of the AL-DNLS
equation (18) is proved to be conditionally preserved under the action of discrete gauge
transformations. It depends on whether its probability current is zero or not. This shows
that some quasi-period orbits of the AL-DNLS equation are destroyed by discrete gauge
transformations. However, as pointed out at the end of the last section, this needs not imply
that the two dynamical systems are different. Any way, the geometric study for the AL-DNLS
equation in this paper reveals that some chaotic properties of different nonlinear discrete
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equations may happen to be related and interacted to each other, and this aspect deserves
further investigation.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (10531090)
and STCSM. The author sincerely thanks the referees for their nice comments and suggestions.
He also thanks Dr Wei Lin for helping to produce the figures in the paper by Mathlab and
valuable discussions.

Appendix

This appendix gives explicit proofs of (24), (25), (26), (30), (31) and the last step of (27).

(1) The proof of (24). By the first equation of (19) and the relation (22), we have

Sn−1Sn = G−1
n−1σ3Gn−1G

−1
n σ3Gn = G−1

n GnG
−1
n−1σ3Gn−1G

−1
n σ3Gn

= G−1
n

(
1 q̄n−1

qn−1 1

)
σ3

(
1 q̄n−1

qn−1 1

)−1

σ3Gn

= 1

1 + |qn−1|2 G−1
n

(
1 − |qn−1|2 2q̄n−1

−2qn−1 1 − |qn−1|2
)

Gn. (A.1)

Hence, 1
2 tr(Sn−1Sn) = 1−|qn−1|2

1+|qn−1|2 and 1 + 1
2 tr(Sn−1Sn) = 2

1+|qn−1|2 . This proves (24).

(2) The proof of (25). From above (A.1), we see

I + Sn−1Sn = G−1
n

I +

 1−|qn−1|2
1+|qn−1|2

2q̄n−1

1+|qn−1|2

− 2qn−1

1+|qn−1|2
1−|qn−1|2
1+|qn−1|2

Gn

= 2

1 + |qn−1|2 G−1
n

(
1 q̄n−1

−qn−1 1

)
Gn.

Hence,

G−1
n

(
1 q̄n−1

−qn−1 1

)
Gn = 1 + |qn−1|2

2
(I + Sn−1Sn) = I + Sn−1Sn

1 + 1
2 tr(Sn−1Sn)

.

Here we have used equation (24). This completes the proof of (25).

(3) The proof of (26). Similar to getting (A.1), from the first equation of (19) and the relation
(22), we have

Sn + Sn−1 = G−1
n σ3Gn + G−1

n−1σ3Gn−1 = G−1
n

(
σ3 + GnG

−1
n−1σ3Gn−1G

−1
n

)
Gn

= G−1
n

[
σ3 +

(
1 q̄n−1

qn−1 1

)
σ3

(
1 q̄n−1

qn−1 1

)−1
]

Gn

= G−1
n

[
σ3 +

1

1 + |qn−1|2
(

1 − |qn−1|2 −2q̄n−1

−2qn−1 −1 + |qn−1|2
)]

Gn

= 2

1 + |qn−1|2 G−1
n

(
1 −q̄n−1

−qn−1 −1

)
Gn.
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Hence,

G−1
n

(
1 −q̄n−1

−qn−1 −1

)
Gn = 1 + |qn−1|2

2
(Sn + Sn−1) = Sn + Sn−1

1 + 1
2 tr(Sn−1Sn)

.

Here we have used equation (24) too. This completes the proof of (26).

(4) The proof of (30). Completely analogous to the above proof of (24), we have, from (19)
and (22),

Sn+1Sn = G−1
n+1σ3Gn+1G

−1
n σ3Gn = G−1

n GnG
−1
n+1σ3Gn+1G

−1
n σ3Gn

= 1

1 + |qn−1|2 G−1
n

(
1 − |qn|2 −2q̄n

2qn 1 − |qn|2
)

Gn. (A.2)

Hence,

1 − 1

2
tr(Sn+1Sn) = 1 − 1 − |qn|2

1 + |qn|2 = 2|qn|2
1 + |qn|2 ,

1 +
1

2
tr(Sn+1Sn) = 1 +

1 − |qn|2
1 + |qn|2 = 2

1 + |qn|2 .

This shows (30).

(5) The proof of (31). Like the above proof of (26), we have

Sn+1 + Sn = G−1
n+1σ3Gn+1 + G−1

n σ3Gn = G−1
n

(
GnG

−1
n+1σ3Gn+1G

−1
n + σ3

)
Gn

= G−1
n

[(
1 q̄n

qn 1

)−1

σ3

(
1 q̄n

qn 1

)
+ σ3

]
Gn

= 2

1 + |qn|2 G−1
n

(
1 q̄n

qn−1 −1

)
Gn.

Hence,

G−1
n

(
1 q̄n−1

qn−1 −1

)
Gn = 1 + |qn|2

2
(Sn+1 + Sn) = Sn+1 + Sn

1 + 1
2 tr(Sn+1Sn)

.

Here we have used equation (30). This completes the proof of (31).
Finally, we come to show the last step of (27), which was omitted in [12]. However, the

proof is somewhat complicated.

(6) The proof of the last step of (27). From (22), we see that S2
n = I . Similar to (A.2), we may

also have

SnSn+1 = 1

1 + |qn−1|2 G−1
n

(
1 − |qn|2 2q̄n

−2qn 1 − |qn|2
)

Gn.

Combining this equation with (A.2), we obtain the following relation:

SnSn+1 + Sn+1Sn = 2
1 − |qn|2
1 + |qn|2 I = −2I +

4

1 + |qn|2 I. (A.3)

By noting
(
1− z2+z−2

2

)
z+z−1

2 = 1
4 (−z3 +z+z−1 −z−3), z2−z−1

2
z+z−1

2 = 1
4 (z3 +z−z−1 −z−3),

(
1−

z2+z−2

2

)
z−z−1

2 = 1
4 (−z3 + 3z− 3z−1 + z−3) and z2−z−1

2
z−z−1

2 = 1
4 (z3 − z− z−1 + z−3), we see that
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−i

(
1 − z2 + z−2

2

)
z + z−1

2

Sn+1 + Sn

1 + 1
2 tr(Sn+1Sn)

+ i
z2 − z−2

2

z + z−1

2

I + SnSn+1

1 + 1
2 tr(Sn+1Sn)

− i

(
1 − z2 + z−2

2

)
z − z−1

2

(Sn+1 + Sn)Sn

1 + 1
2 tr(Sn+1Sn)

+ i
z2 − z−2

2

z − z−1

2

(I + SnSn+1)Sn

1 + 1
2 tr(Sn+1Sn)

= − i

4
(−z3 + z + z−1 − z−3)

Sn+1 + Sn

1 + 1
2 tr(Sn+1Sn)

+
i

4
(z3 + z − z−1 − z−3)

I + SnSn+1

1 + 1
2 tr(Sn+1Sn)

− i

4
(−z3 + 3z − 3z−1 + z−3)

Sn+1Sn + I

1 + 1
2 tr(Sn+1Sn)

+
i

4
(z3 − z − z−1 + z−3)

−Sn+1 − Sn + 4
1+|qn|2 Sn

1 + 1
2 tr(Sn+1Sn)

= i

4
(z3 + z − z−1 − z−3)

SnSn+1

1 + 1
2 tr(Sn+1Sn)

+
i

4
(z3 − 3z + 3z−1 − z−3)

Sn+1Sn

1 + 1
2 tr(Sn+1Sn)

+
i

2
(z3 − z + z−1 − z3)

I

1 + tr(Sn+1Sn)
+

i

4
(z3 − z − z−1 + z−3)

4
1+|qn|2 Sn

1 + 1
2 tr(Sn+1Sn)

.

(A.4)

Now, by (A.3), substituting Sn+1Sn = −SnSn+1 −2I + 4
1+|qn|2 I into the second term on the right-

hand side of (A.4), we see that the coefficient of SnSn+1

1+ 1
2 tr(Sn+1Sn)

is i(z − z−1). Then, substituting

SnSn+1 = 1
2

(
SnSn+1 − Sn+1Sn − 2I + 4

1+|qn|2 I
)

again into the resulted expression, we arrive
finally at

right-hand side of (A.4) = − i

2
(z − z−1)

Sn+1Sn − SnSn+1

1 + tr(Sn+1Sn)
+

i

2
(z3 − z + z−1 − z−3)I

+
i

2
(z3 − z − z−1 + z−3)Sn. (A.5)

In the same computation displayed in getting (A.5) and by using the relation

SnSn−1 + Sn−1Sn = 2
1 − |qn−1|2
1 + |qn−1|2 I = −2I +

4

1 + |qn−1|2 I,

we also have

i

(
1 − z2 + z−2

2

)
z + z−1

2

Sn + Sn−1

1 + 1
2 tr(SnSn−1)

− i
z2 − z−2

2

z + z−1

2

I + Sn−1Sn

1 + 1
2 tr(SnSn−1)

+ i

(
1 − z2 + z−2

2

)
z − z−1

2

Sn(Sn + Sn−1)

1 + 1
2 tr(SnSn−1)

− i
z2 − z−2

2

z − z−1

2

Sn(I + Sn−1Sn)

1 + 1
2 tr(SnSn−1)

= i

2
(z − z−1)

SnSn−1 − Sn−1Sn

1 + tr(SnSn−1)
− i

2
(z3 − z + z−1 − z−3)I − i

2
(z3 − z − z−1 + z−3)Sn.

(A.6)

Hence, we obtain the last (i.e., third) equality in (27) by summing (A.5) and (A.6) and
substituting the resulted summation into the expression of the second equality in (27). This
finishes the proof of the last step of (27).
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